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ABSTRACT 

The space-time development of jet hadronization is 

investigated in two-dimensional quantum electrodynamics. It 

is found that the characteristic space-time scale of jet 

hadronization is considerably shorter than the one given by 

approximately free propagation of quarks. 
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Recently a great deal of progress has been made in 

understanding inclusive jet phenomena. 1 However, there is 

still lacking an understanding of the final stage of jet 

evolution i.e., jet hadronization. Aside from an 

interesting attempt by Amati and Veneziano, 2 
we know very 

little about the hadronization. 

In this note, we wish to address the question of jet 

hadronization in solvable two-dimensional (l-space and 

l-time) gauge theories. These theories seem to provide us a 

unique place to investigate the interplay between hard and 

soft processes. 

One of the most important aspects of jet hadronization 

may be its time scale. Therefore we first develop, in a 

systematic way, a formalism which enables us to describe the 

space-time structure of jet hadronization. Secondly, we 

will discuss two-dimensional gauge theories. 

Following Carruthers and Zachariasen3 we introduce a 

field theoretic version of Wigner's phase space 

distribution4 in quantum mechanics, 

bp,R) = J d2r eipr(O +m2)R-r,2 <lal$(R-+r) $(R+$r)lQ> 

2 
x (0 +m )R+r,2 . (1) 

Here I@> is a normalized Heisenberg "in" state, and I$ is the 

Heisenberg operator for a hadron with mass m. We deal with 
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the amputated quantity since it is directly related to an 

observable quantity: 

$ (2n)2wp $ E <@~a~ut(p)aout(p)~@> . 

= J- d2R ;(p,R) 
p2=m2 

(2) 

If we impose the mass shell condition, it is clear from the 

above equation that F(p,R) contains the information about 

which space-time region dominantly contributes in producing 

the hadron of momentum p. Although we restrict ourselves to 

the production of spinless hadrons in two-dimensional 

space-time, the generalization of our formalism to more 

realistic cases is straightforward. 

Let us examine how the formalism works in massless 

quantum electrodynamics in l-space and l-time dimension 

(Schwinger mode1).5'6 As in Ref. 6 we take the classical 

external source approximation of receding quark and antiquark 
+- in e e annihilation (in this note, we use the terms quark 

and gluon instead of electron and photon): 

ext 
j, = gs (x-t 

ext 
j0 = -gs (x+t 

.) . for x>O ,), jFXt = g&(x-t 

,), jTXt = g6(x+t .I - for xc0 (3) 
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Using the formulas in Ref. 3 F(p,R) can readily be 

calculated as 

F(p,R) = lim $$g$ 
cc+0 + 

sin (p+R-) sin (p-R+) 

--ER --ER 
x B(R+)B(R-1 e + e - r (4) 

where p+ = (p. f pl) etc. The above expression shows that 

the dominant contribution comes from the region p+R- 5 1 and 

P-R+ s 1. 
7 Thus we reproduce the well-known hyperbola 

R+R- 5 mm2 ' which is demonstrated by Casher, Kogut, and 

Susskind, 6 who used a purely classical argument. 

Let us proceed to a quantum treatment of the same 

problem. In particular, we want to go beyond the classical 

external source approximation of separating quarks. In 

order to do this, we propose to use the modified phase space 

distribution 

1 F(p,R) = z disc 
r 

d2x eiQx 
/ 

d2reipr 

x (U +m2)R-r,2 <OIT S(x)@(R-+$'(R++(O)/O> 

' (n+m2)R+r/2 , (5) 

where s(x) is a current (indices abbreviated) coupled to a 
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time-like photon with mass Q2. The prescript "disc" means to 

take the discontinuity in the channel appropriate for the 
+- reaction e e + hadron (p) + anything. Notice that F(p,R) in 

(5) also satisfies the relation (2) apart from some 

multiplicative factor. 

In the original definition (l),3 IO> cannot be a 

momentum eigenstate because, if so, translational invariance 

then requires F(p,R) to be independent of R. This 

difficulty can be avoided if the reactions are induced by a 

local current. The e+e- annihilation is an ideal place for 

this since the space-time point x in (5) is kinematically 

confined in the region Al/ Q $". Thus we expect that F(p,R) in 

(5) provides information on the space-time development of 

jet hadronization within a (spatio-temporal) resolution 

In this paper we restrict ourselves to the scalar 

current s(x)=~(x)$(x) since it bears a closer resemblance to 

the electromagnetic current in four dimensions than does the 

vector current. 6 Use of the pseudoscalar current would not 

affect our qualitative conclusions. 

Since the model is exactly soluble 5 it is 

straightforward to calculate the phase space distribution. 

In this model c$(x) in (5) denotes the massive boson field 

which appears in the physical spectrum of the theory. We 

have 



F(p,R) = C e 2i(Q-p)R e4r2A(+) Cm, 2R) I 

6 

(6) 

where C is a constant containing Euler's constant and 

,(+) (m,x) = / dk -ikx . 
(2X)2Uk e 

(7) 

This result is entirely different from the one with the 

external source approximation. The dominant contribution 

comes from RuRu i ~/(Q-P)~ = O(l/Q2). The last equality 

follows from the fact the missing mass squared is in general 

of the order of z Q ‘ except for a restricted kinematical 

region. 9 

Some readers may be doubtful about such a drastic 

change in the result. However the result (6) appears quite 

natural if we look at the diagram of scalar photon vacuum 

polarization dipicted in Fig. 1. In terms of hadronic 

variables (left-hand-side of Fig. 1) the process scalar 

photon + hadrons occurs instantaneously. The phase space 

distribution (6) describes this fact within a limited 

resolution sl/ Q P . 

Let us examine the same process in terms of quark-gluon 

variables. (Right-hand-side of Fig. 1.) First we show that 

the result in terms of hadronic variables can be reproduced 

by summing the perturbation servies in quark-gluon basis. 

Since the quantity under discussion <OIT s(x) s(O) IO> is 
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gauge invariant, we can choose the light-cone gauge without 

loss of generality. In this gauge, the upper and lower 

parts of the quark line in Fig. 1 do not communicate with 

each other nor do the diagrams with radiative corrections on 

both quark lines survive because of the Y-matrix algebra. 

Then, using Stamatescu and WU'S result" on the quark 

propagator, we can immediately verify the above conclusions. 

We note that the same process looks quite different in 

hadronic and quark-gluon bases. In the latter, a quark 

radiates successive gluons with vacuum polarization 

corrections in contrast to the instanteous production in the 

former. Whereas the confinement force is already operative 

in a very short space-time region R2 * l/Q2, the system can 

be described by the quark-gluon language to a longer time 

scale. Since quarks and gluons are not in the physical 

spectrum of the theory, it is, in general, a difficult 

question how to evaluate this time scale. 

We argue, however, that this time scale can be 

estimated by the following 6 consideration. Since the 

theory is asymptotically free the short-time behavior of 

e e + - final states should be described by almost free quarks. 

This can be seen in view of the expression corresponding to 

Fig. 1, 

-4inAF(0,x) 4inAF(m,x) 
<OIT s(x)s(O)lO> = ' 

2n2x2 e 
e , (8) 
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where AF(n,x) is the Feynman propagator of mass u qUanta. 

If x2 L m -2 the exponent AF(O,x)-AF(m,x) tends to zero and 

we are left with free fermion singularity 1/x2. Then we 

obtain the space-time scale x2 -2 =m beyond which the free 

quark description breaks down. 

Of course we could describe the system entirely by 

hadronic variables since the logarithmic singularity in 

AF(O,x) precisely cancels the free quark singularity xm2 in 

(8). Thus in the region Q-2Lx2<m-2 we can describe the 

system by either hadronic or quark-gluon languages. 11 

So far we have confined ourselves to the massless 

Schwinger model. We now try to examine the stability under 

a quark mass. Since the massive Schwinger model is not 

soluble (at present), we restrict ourselves to the case of 

small quark mass v<<g and rely upon mass perturbation 

theory. We consider the bosonized form of the theory and 

choose the perturbative vacuum In=O> rather than the 

8-vacuum.12 This is because the result (8) of the original 

Schwinger solution and of the perturbation series summation 

corresponds to the choice of the n=O vacuum.13 This 

restriction does not seem to affect our qualitative 

conclusions. 

The mass has the potential to invalidate our conclusion 

about the short time ($1/Q) hadronization in the massless 

model. For instance the diagram dipicted in Fig. 2 

contributes to second order in u. However the calculated 
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result of the phase space distribution is 

&p-R) = ($(g)' 1' (4x66') $1 s ;:::,la" 

i(Q-kl-k2)R ei 
Q-kl-k2 

x e 
2 

x S;;! (k;)S;:;(k;)S$ (k;)Ss6 [(Q-kl-k:)]. (9) 
Here C' means the summuation over E,E',~ and 6' = +l under 

the constraint ~+s'+6+6'=0 and K is a numerical constant 

containing Euler's constant. The function S is defined by 

S &k2) = / d2x e -lkx <OIT:e 2fii.5$(x)::e2fii6+(0) :/O> , (10) 

and SLi)= ImSs6. From (9) it is clear that R2 5 O(l/Q2) 

except for a restricted kinematical region. We have also 

checked the stability of the result by including the 

remaining diagrams up to second order in u. 

It is more interesting to examine the problem in 

two-dimensional quantum chromodynamics. The l/NC expansion, 

however, is inappropriate to investigate the space-time 
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structure since directly produced resonances live an 

infinitely long time if NC+=. 

From studies of two-dimensional QED we are led to the 

apparently puzzling conclusion that the space-time scale of 

(approximately) free propagation of quarks is larger than 

the hadronization space-time scale. This conflicts with 

classical intuition 14 but can be consistent with quantum 

mechanics; it means that between these two time scales the 

overlapping of the hadron wave functions is so important as 

to allow the approximately free quark description of the 

hadron system. We emphasize the existence of (at least) one 

consistent theory which satisfies simultaneously the 

asymptotic freedom and "hard" confinement. 

One may ask which aspect of our result survives for the 

real four-dimensional world. We are tempted to speculate 

that the short-space-time hadronization in two dimensions 

survives in the form of short-space-time color screening in 

four dimensions.15 Although the screening and the 

hadronization may be the same thing in two dimensions, it 

probably is not in four dimensions since there may be 

certain reshuffling processes because of the physical 

degrees of freedom of the gluon. If the hierarchy of the 

two different time scales (i.e., one of hadronization and 

one of free quark propagation) survives in spite of this 

difference between two and four dimensions, it enables us to 

understand the duality16 between free-quark and 
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potential-model (hadronic) descriptions of efe- final 

states. 
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FIGURE CAPTIONS 

Fig. 1 Schematic illustraction of current correlation function 

(8). The dashed, solid, and wavy lines indicate massive 

bosons, quarks, and gluons, respectively. 

Fig. 2 Illustration of a contribution to F(p,R) in second order 

of quark mass p. 
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